click to view more

Introduction to Statistical Relational Learning Adaptive Computation and Machine Learning series

by Introduction to Statistical Relational Learning

$71.86

add to favourite
  • In Stock - Guaranteed to ship in 24 hours with Free Online tracking.
  • FREE DELIVERY by Friday, April 25, 2025 3:45:38 AM UTC
  • 24/24 Online
  • Yes High Speed
  • Yes Protection
Last update:

Description

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.

Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

Last updated on

Product Details

  • MIT Press Brand
  • Sep 22, 2019 Pub Date:
  • 9780262538688 ISBN-13:
  • 0262538687 ISBN-10:
  • 602.0 pages Paperback
  • English Language
  • 10 in * 1.36 in * 8 in Dimensions:
  • 3 lb Weight: