click to view more

Linear Algebra for Data Science Machine Learning and Signal Processing

by [Fessler, Jeffrey A., Nadakuditi, Raj Rao]

$69.37

add to favourite
  • In Stock - Guaranteed to ship in 24 hours with Free Online tracking.
  • FREE DELIVERY by Friday, April 11, 2025 2:07:08 PM UTC
  • 24/24 Online
  • Yes High Speed
  • Yes Protection
Last update:

Description

Maximise student engagement and understanding of matrix methods in data-driven applications with this modern teaching package. Students are introduced to matrices in two preliminary chapters, before progressing to advanced topics such as the nuclear norm, proximal operators and convex optimization. Highlighted applications include low-rank approximation, matrix completion, subspace learning, logistic regression for binary classification, robust PCA, dimensionality reduction and Procrustes problems. Extensively classroom-tested, the book includes over 200 multiple-choice questions suitable for in-class interactive learning or quizzes, as well as homework exercises (with solutions available for instructors). It encourages active learning with engaging 'explore' questions, with answers at the back of each chapter, and Julia code examples to demonstrate how the mathematics is actually used in practice. A suite of computational notebooks offers a hands-on learning experience for students. This is a perfect textbook for upper-level undergraduates and first-year graduate students who have taken a prior course in linear algebra basics.

Last updated on

Product Details

  • Cambridge University Pres Brand
  • May 16, 2024 Pub Date:
  • 9781009418140 ISBN-13:
  • 1009418149 ISBN-10:
  • English Language
  • 9.5 in * 1.2 in * 6.9 in Dimensions:
  • 2 lb Weight: