Chord Transformations in Higher-Dimensional Networks proposes an in-depth formal framework for generalized Tonnetze. It takes an algebraic approach and studies systems of k-chords in n-TET scales derived from a given k-mode (array of step intervals) through mode permutations and chord root translations, by combining key ideas of the neo-Riemannian Tonnetz theories with serial approaches to chordal structures. In particular, it provides the generalization of the neo-Riemannian P, R, L transformations via the notion of 'drift' operator, which is the main novelty of the approach. At the same time, the book is thorough in building the formal framework covering many moments and details, with special attention to trichords and tetrachords, which allow the geometric visualization of their structure helping to understand the more abstract transformations in higher-dimensional networks.
Features