click to view more

Machine Learning with PySpark: With Natural Language Processing and Recommender Systems

by Singh, Pramod

$48.70

List Price: $64.99
Save: $16.29 (25%)
add to favourite
  • In Stock - Guaranteed to ship in 24 hours with Free Online tracking.
  • FREE DELIVERY by Thursday, April 24, 2025 12:04:39 AM UTC
  • 24/24 Online
  • Yes High Speed
  • Yes Protection
Last update:

Description

Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.

Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library.

After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications

What you will learn:

  • Build a spectrum of supervised and unsupervised machine learning algorithms
  • Use PySpark's machine learning library to implement machine learning and recommender systems
  • Leverage the new features in PySpark's machine learning library
  • Understand data processing using Koalas in Spark
  • Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit models

Who This Book Is For

Data science and machine learning professionals.

Last updated on

Product Details

  • Apress Brand
  • Dec 9, 2021 Pub Date:
  • 9781484277768 ISBN-13:
  • 1484277767 ISBN-10:
  • English Language
  • 10 in * 0.55 in * 7.01 in Dimensions:
  • 1 lb Weight: